Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373794

RESUMO

Mammalian (or mechanistic) target of rapamycin complex 2 (mTORC2) is a kinase complex that targets predominantly Akt family proteins, SGK1 and protein kinase C (PKC), and has well-characterized roles in mediating hormone and growth factor effects on a wide array of cellular processes. Recent evidence suggests that mTORC2 is also directly stimulated in renal tubule cells by increased extracellular K+ concentration, leading to activation of the Na+ channel, ENaC, and increasing the electrical driving force for K+ secretion. We identify here a signaling mechanism for this local effect of K+. We show that an increase in extracellular [K+] leads to a rise in intracellular chloride (Cl-), which stimulates a previously unknown scaffolding activity of the protein 'with no lysine-1' (WNK1) kinase. WNK1 interacts selectively with SGK1 and recruits it to mTORC2, resulting in enhanced SGK1 phosphorylation and SGK1-dependent activation of ENaC. This scaffolding effect of WNK1 is independent of its own kinase activity and does not cause a generalized stimulation of mTORC2 kinase activity. These findings establish a novel WNK1-dependent regulatory mechanism that harnesses mTORC2 kinase activity selectively toward SGK1 to control epithelial ion transport and electrolyte homeostasis.


Assuntos
Proteínas Imediatamente Precoces , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Cloretos/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Proteínas Serina-Treonina Quinases , Serina-Treonina Quinases TOR/metabolismo , Transporte de Íons , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mamíferos/metabolismo
2.
J Biol Chem ; 298(9): 102288, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926713

RESUMO

Mechanistic target of rapamycin complex 2 (mTORC2) is a multi-subunit kinase complex, central to multiple essential signaling pathways. Two core subunits, Rictor and mSin1, distinguish it from the related mTORC1 and support context-dependent phosphorylation of its substrates. mTORC2 structures have been determined previously; however, important questions remain, particularly regarding the structural determinants mediating substrate specificity and context-dependent activity. Here, we used cryo-EM to obtain high-resolution structures of the human mTORC2 apo-complex in the presence of substrates Akt and SGK1. Using functional assays, we then tested predictions suggested by substrate-induced structural changes in mTORC2. For the first time, we visualized in the apo-state the side chain interactions between Rictor and mTOR that sterically occlude recruitment of mTORC1 substrates and confer resistance to the mTORC1 inhibitor rapamycin. Also in the apo-state, we observed that mSin1 formed extensive contacts with Rictor via a pair of short α-helices nestled between two Rictor helical repeat clusters, as well as by an extended strand that makes multiple weak contacts with Rictor helical cluster 1. In co-complex structures, we found that SGK1, but not Akt, markedly altered the conformation of the mSin1 N-terminal extended strand, disrupting multiple weak interactions while inducing a large rotation of mSin1 residue Arg-83, which then interacts with a patch of negatively charged residues within Rictor. Finally, we demonstrate mutation of Arg-83 to Ala selectively disrupts mTORC2-dependent phosphorylation of SGK1, but not of Akt, supporting context-dependent substrate selection. These findings provide new structural and functional insights into mTORC2 specificity and context-dependent activity.


Assuntos
Proteínas Imediatamente Precoces , Proteínas Monoméricas de Ligação ao GTP , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo
3.
J Biol Chem ; 296: 100632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865855

RESUMO

Nonshivering thermogenesis is essential for mammals to maintain body temperature. According to the canonical view, temperature is sensed by cutaneous thermoreceptors and nerve impulses transmitted to the hypothalamus, which generates sympathetic signals to ß-adrenergic receptors in brown adipocytes. The energy for heat generation is primarily provided by the oxidation of fatty acids derived from triglyceride hydrolysis and cellular uptake. Fatty acids also activate the uncoupling protein, UCP1, which creates a proton leak that uncouples mitochondrial oxidative phosphorylation from ATP production, resulting in energy dissipation as heat. Recent evidence supports the idea that in response to mild cold, ß-adrenergic signals stimulate not only lipolysis and fatty acid oxidation, but also act through the mTORC2-Akt signaling module to stimulate de novo lipogenesis. This opposing anabolic effect is thought to maintain lipid fuel stores during increased catabolism. We show here, using brown fat-specific Gs-alpha knockout mice and cultured adipocytes that, unlike mild cold, severe cold directly cools brown fat and bypasses ß-adrenergic signaling to inhibit mTORC2. This cell-autonomous effect both inhibits lipogenesis and augments UCP1 expression to enhance thermogenesis. These findings suggest a novel mechanism for overriding ß-adrenergic-stimulated anabolic activities while augmenting catabolic activities to resolve the homeostatic crisis presented by severe cold.


Assuntos
Tecido Adiposo Marrom/metabolismo , Cromograninas/fisiologia , Temperatura Baixa , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Animais , Lipogênese , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31013253

RESUMO

Potassium (K+) secretion by kidney tubule cells is central to electrolyte homeostasis in mammals. In the K+ secretory "principal" cells of the distal nephron, electrogenic Na+ transport by the epithelial sodium channel (ENaC) generates the electrical driving force for K+ transport across the apical membrane. Regulation of this process is attributable in part to aldosterone, which stimulates the gene transcription of the ENaC-regulatory kinase, SGK1. However, a wide range of evidence supports the conclusion that an unidentified aldosterone-independent pathway exists. We show here that in principal cells, K+ itself acts through the type 2 mTOR complex (mTORC2) to activate SGK1, which stimulates ENaC to enhance K+ excretion. The effect depends on changes in K+ concentration on the blood side of the cells, and requires basolateral membrane K+-channel activity. However, it does not depend on changes in aldosterone, or on enhanced distal delivery of Na+ from upstream nephron segments. These data strongly support the idea that K+ is sensed directly by principal cells to stimulate its own secretion by activating the mTORC2-SGK1 signaling module, and stimulate ENaC. We propose that this local effect acts in concert with aldosterone and increased Na+ delivery from upstream nephron segments to sustain K+ homeostasis.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Túbulos Renais/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Aldosterona/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Camundongos , Natriurese/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação , Potássio/urina , Cloreto de Potássio/farmacologia , Sódio/urina
5.
J Cell Sci ; 132(7)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30837283

RESUMO

mTORC2 lies at the intersection of signaling pathways that control metabolism and ion transport through phosphorylation of the AGC-family kinases, the Akt and SGK1 proteins. How mTORC2 targets these functionally distinct downstream effectors in a context-specific manner is not known. Here, we show that the salt- and blood pressure-regulatory hormone, angiotensin II (AngII) stimulates selective mTORC2-dependent phosphorylation of SGK1 (S422) but not Akt (S473 and equivalent sites). Conventional PKC (cPKC), a critical mediator of the angiotensin type I receptor (AT1R, also known as AGTR1) signaling, regulates the subcellular localization of SIN1 (also known as MAPKAP1) and SGK1. Inhibition of cPKC catalytic activity disturbs SIN1 and SGK1 subcellular localization, re-localizing them from the nucleus and a perinuclear compartment to the plasma membrane in advance of hormonal stimulation. Surprisingly, pre-targeting of SIN1 and SGK1 to the plasma membrane prevents SGK1 S422 but not Akt S473 phosphorylation. Additionally, we identify three sites on SIN1 (S128, S315 and S356) that are phosphorylated in response to cPKC activation. Collectively, these data demonstrate that SGK1 activation occurs at a distinct subcellular compartment from that of Akt and suggests a mechanism for the selective activation of these functionally distinct mTORC2 targets through subcellular partitioning of mTORC2 activity.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
6.
Sci Rep ; 8(1): 2088, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391429

RESUMO

The type 2 diabetic phenotype results from mixed effects of insulin deficiency and insulin resistance, but the relative contributions of these two distinct factors remain poorly characterized, as do the respective roles of the gluconeogenic organs. The purpose of this study was to investigate localized in vivo metabolic changes in liver and kidneys of contrasting models of diabetes mellitus (DM): streptozotocin (STZ)-treated wild-type Zucker rats (T1DM) and Zucker diabetic fatty (ZDF) rats (T2DM). Intermediary metabolism was probed using hyperpolarized (HP) [1-13C]pyruvate MRI of the liver and kidneys. These data were correlated with gene expression data for key mediators, assessed using rtPCR. Increased HP [1-13C]lactate was detected in both models, in association with elevated gluconeogenesis as reflected by increased expression of phosphoenolpyruvate carboxykinase. In contrast, HP [1-13C]alanine diverged between the two models, increasing in ZDF rats, while decreasing in the STZ-treated rats. The differences in liver alanine paralleled differences in key lipogenic mediators. Thus, HP [1-13C]alanine is a marker that can identify phenotypic differences in kidneys and liver of rats with T1DM vs. T2DM, non-invasively in vivo. This approach could provide a powerful diagnostic tool for characterizing tissue metabolic defects and responses to treatment in diabetic patients with ambiguous systemic manifestations.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Gluconeogênese , Resistência à Insulina , Insulina/deficiência , Lipogênese , Imageamento por Ressonância Magnética/métodos , Alanina/farmacocinética , Animais , Diabetes Mellitus Experimental/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/metabolismo , Ácido Láctico/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Piruvatos/farmacocinética , Ratos , Ratos Zucker
7.
J Clin Invest ; 125(1): 117-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25415435

RESUMO

The epithelial Na+ channel (ENaC) is essential for Na+ homeostasis, and dysregulation of this channel underlies many forms of hypertension. Recent studies suggest that mTOR regulates phosphorylation and activation of serum/glucocorticoid regulated kinase 1 (SGK1), which is known to inhibit ENaC internalization and degradation; however, it is not clear whether mTOR contributes to the regulation of renal tubule ion transport. Here, we evaluated the effect of selective mTOR inhibitors on kidney tubule Na+ and K+ transport in WT and Sgk1-/- mice, as well as in isolated collecting tubules. We found that 2 structurally distinct competitive inhibitors (PP242 and AZD8055), both of which prevent all mTOR-dependent phosphorylation, including that of SGK1, caused substantial natriuresis, but not kaliuresis, in WT mice, which indicates that mTOR preferentially influences ENaC function. PP242 also substantially inhibited Na+ currents in isolated perfused cortical collecting tubules. Accordingly, patch clamp studies on cortical tubule apical membranes revealed that mTOR inhibition markedly reduces ENaC activity, but does not alter activity of K+ inwardly rectifying channels (ROMK channels). Together, these results demonstrate that mTOR regulates kidney tubule ion handling and suggest that mTOR regulates Na+ homeostasis through SGK1-dependent modulation of ENaC activity.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Distais/metabolismo , Complexos Multiproteicos/fisiologia , Sódio/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Amilorida/farmacologia , Animais , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Proteínas Imediatamente Precoces/metabolismo , Indóis/farmacologia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Potenciais da Membrana , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4 , Técnicas de Patch-Clamp , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/farmacologia , Ratos Sprague-Dawley , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Mol Cell Biol ; 32(1): 96-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037765

RESUMO

Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Obesidade/genética , Obesidade/metabolismo , Animais , Dieta , Deleção de Genes , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo
9.
J Biol Chem ; 286(41): 35663-35674, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21862579

RESUMO

TANK-binding kinase (TBK1) is essential for transcription of the interferon (IFN) ß gene in response to lipopolysaccharide (LPS) and double-stranded RNA, but the molecular mechanisms that underlie the activation of TBK1 are incompletely understood. Previously, we identified the NF-κB essential modulator (NEMO)-related polyubiquitin-binding protein, optineurin (OPTN), as a novel binding partner of TBK1. To determine whether the ubiquitin-binding function of OPTN is involved in regulating TBK1 and IFNß production, we generated a mouse in which wild-type optineurin was replaced by the polyubiquitin binding-defective mutant, OPTN(D477N/D477N). In this study, we found that LPS or poly(I:C)-induced TBK1 activity was significantly reduced in bone marrow-derived macrophage (BMDM) from OPTN(D477N/D477N) mice. Consistent with this, the phosphorylation of IFN regulatory factor 3 (IRF3) and the production of IFNß mRNA and secretion were reduced. Stimulation of BMDMs with LPS triggered the phosphorylation of OPTN, which was reversed by phosphatase treatment and prevented by pharmacological inhibition of both the canonical IκB kinases (IKKα/ß) and the IKK-related kinases (TBK1/IKKε). In contrast, LPS-stimulated phosphorylation of OPTN(D477N) was markedly reduced in BMDMs from OPTN(D477N/D477N) mice, and inhibition of the canonical IKKs alone prevented phosphorylation, providing further evidence that ubiquitin binding to OPTN contributes to LPS-induced TBK1 activation. TBK1 and IKKß phosphorylated OPTN preferentially at Ser-177 and Ser-513, respectively, in vitro. In conclusion, our results suggest that OPTN binds to polyubiquitylated species formed in response to LPS and poly(I:C), enhancing the activation of TBK1 that is required for optimal phosphorylation of IRF3 and production of IFNß.


Assuntos
Proteínas do Olho/metabolismo , Interferon beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Ciclo Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Indutores de Interferon/farmacologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Lipopolissacarídeos/farmacologia , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Poli I-C/farmacologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ubiquitina/genética
10.
Mol Endocrinol ; 24(1): 178-92, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897600

RESUMO

A family of IGF-binding proteins (IGFBP) exerts biological actions both dependent on and independent of IGF-I. A major effector of the insulin/IGF-I signaling pathway, the serine/threonine protein kinase Akt, mediates cellular processes such as glucose uptake, protein synthesis, cell survival, and growth. IGF-I is required for normal organismal growth, and in the pancreatic beta-cell, the insulin/IGF-I signaling pathway is critical for normal and adaptive maintenance of beta-cell mass. Expression of myrAkt1, an activated form of Akt, in the endocrine pancreas drives beta-cell expansion through dramatic increases in both islet and beta-cell size and number. Herein we present a comparative expression profiling of myrAkt1 transgenic islets that demonstrates the increased abundance of transcripts encoding proteins associated with growth, suppression of apoptosis, RNA processing, and metabolism. Although IGFBP5 is identified as a gene induced by Akt1 activation in the beta-cell, Igfbp5 expression is not necessary for myrAkt1 to augment beta-cell size or mass in vivo. However, in the absence of Igfbp5, mice demonstrate an increase in size and mild glucose intolerance. This is accentuated during diet-induced obesity, when Igfbp5-deficient mice have increased adiposity compared with wild-type mice on the same diet. These studies reveal a novel role for Igfbp5 in the control of growth and metabolism.


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Adiposidade/genética , Animais , Tamanho Corporal/genética , Linhagem Celular , Tamanho Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Intolerância à Glucose/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Especificidade de Órgãos , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Tempo , Regulação para Cima
13.
J Biol Chem ; 282(14): 10341-51, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17287212

RESUMO

The AMP-activated protein kinase (AMPK) is a central regulator of the energy status of the cell, based on its unique ability to respond directly to fluctuations in the ratio of AMP:ATP. Because glucose and amino acids stimulate insulin release from pancreatic beta-cells by the regulation of metabolic intermediates, AMPK represents an attractive candidate for control of beta-cell function. Here, we show that inhibition of AMPK in beta-cells by high glucose inversely correlates with activation of the mammalian Target of Rapamycin (mTOR) pathway, another cellular sensor for nutritional conditions. Forced activation of AMPK by AICAR, phenformin, or oligomycin significantly blocked phosphorylation of p70S6K, a downstream target of mTOR, in response to the combination of glucose and amino acids. Amino acids also suppressed the activity of AMPK, and this at a minimum required the presence of leucine and glutamine. It is unlikely that the ability of AMPK to sense both glucose and amino acids plays a role in regulation of insulin secretion, as inhibition of AMPK by amino acids did not influence insulin secretion. Moreover, activation of AMPK by AICAR or phenformin did not antagonize glucose-stimulated insulin secretion, and insulin secretion was also unaffected in response to suppression of AMPK activity by expression of a dominant negative AMPK construct (K45R). Taken together, these results suggest that the inhibition of AMPK activity by glucose and amino acids might be an important component of the mechanism for nutrient-stimulated mTOR activity but not insulin secretion in the beta-cell.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/enzimologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Masculino , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR
14.
Diabetes ; 51(6): 1772-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12031964

RESUMO

Previous work has suggested that functional interrelationships may exist between inhibition of insulin secretion by interleukin (IL)-1beta and the endogenous synthesis of prostaglandin E(2) (PGE(2)) in the pancreatic islet. These studies were performed to ascertain the relative abundance of E prostaglandin (EP) receptor mRNAs in tissues that are major targets, or major degradative sites, of insulin; to identify which EP receptor type mediates PGE(2) inhibition of insulin secretion in pancreatic islets; and to examine possible sites of action through which sodium salicylate might affect IL-1beta/PGE(2) interactions. Real-time fluorescence-based RT-PCR indicated that EP3 is the most abundant EP receptor type in islets, liver, kidney, and epididymal fat. EP3 mRNA is the least, whereas EP2 mRNA is the most, abundant type in skeletal muscle. Misoprostol, an EP3 agonist, inhibited glucose-induced insulin secretion from islets, an event that was prevented by preincubation with pertussis toxin, by decreasing cAMP. Electromobility shift assays demonstrated that sodium salicylate inhibits IL-1beta-induced nuclear factor-kappaB (NF-kappaB) activation. Sodium salicylate also prevented IL-1beta from inducing EP3 and cyclooxygenase (COX)-2 gene expression in islets and thereby prevented IL-1beta from inhibiting glucose-induced insulin secretion. These findings indicate that the sites of action through which sodium salicylate inhibits these negative effects of IL-1beta on beta-cell function include activation of NF-kappaB as well as generation of PGE(2) by COX-2.


Assuntos
Expressão Gênica/efeitos dos fármacos , Interleucina-1/farmacologia , Ilhotas Pancreáticas/fisiologia , Isoenzimas/genética , Prostaglandina-Endoperóxido Sintases/genética , Receptores de Prostaglandina E/genética , Salicilato de Sódio/farmacologia , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase/farmacologia , Dinoprostona/farmacologia , Epididimo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP3 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...